PhD THESIS

Signal Processing Methodologies

– SUMMARY –

PhD Candidate,
Lecturer Nicolaie POPESCU-BODORIN

PhD Coordinator,
Professor Lumița STATE

2011
Content of this document

Content of the thesis ... iii
Autoevaluation ... vi
Motivation ... vii
Outline ... viii
Bibliography ... xii
CONTENT OF THE THESIS

1. Introduction.. 6

2. Iris recognition – past and present .. 11
 2.1. Pioneering in iris recognition.. 12
 2.1.1. Iris recognition system proposed by Flom & Safir ... 12
 2.1.2. Daugman’s iris recognition system... 14
 2.1.3. Iris recognition system proposed by Wildes et al. ... 19
 2.2. Daugman's statistical recognition paradigm. Basic terminology and notations used in this thesis.. 20
 2.2.1. One-to-one, one-to-all and all-to-all iris code comparisons .. 22
 2.2.2. Experimental score distributions: imposter and genuine pairs. Experimental acceptance / rejection rates: FAR, FRR, TRR, TAR, EER and other related performance metrics... 23
 2.2.3. Binary iris code vs. digital identity.. 25
 2.3. Iris recognition – the state of the art. Comparing our work to the current state of the art in iris recognition... 27
 2.3.1. IREX 1 ... 27
 2.3.2. Choosing the test database and the test methodology in relation to the current state of the art in iris recognition.. 28
 2.3.3. Choosing performance criteria for evaluating iris recognition system tested in this work in relation to the performance criteria commonly used in the present state of the art of iris recognition.. 29
 2.3.4. Recent iris recognition results chosen as reference results for our work.............................. 31
 2.4. Iris recognition related issues. Motivating the new directions discussed in this thesis.................. 33

3. New methods in iris recognition. Part one: Primary segmentation and encoding techniques .. 37
 3.1. Finding the pupil: RLE-FKMQ Based Pupil Finder .. 38
 3.1.1. Fuzzy membership assignment of the pixels to the pupil. Computing the pupil indicator. ... 41
 3.1.2. Using the pupil indicator for pupil extraction.. 43
 3.1.3. RLE-FKMQ Based Pupil Finder .. 45
 3.2. Finding the limbic boundary: Circular Fuzzy Iris Segmentation .. 47
 3.2.1. Combined (crisp or) fuzzy indicator of a disjoint reunion .. 47
 3.2.2. Circular Fuzzy Iris Segmentation .. 49
 3.3. Encoding the iris: Gabor Analytic Iris Texture Binary Encoder .. 56
 3.3.1. Hilbert transform and Gabor strong analytic signal... 57
 3.3.2. Hilbert Encoder or Gabor Analytic Iris Texture Binary Encoder .. 60

4. Bivalent/Multivalent logics for iris recognition and biometry ... 62
 4.1. New computational logic instruments for designing intelligent agents for iris recognition. Computational Cognitive Binary Logic (CCBL) ... 64
4.1. Complexification / Decomplexification rules in CCBL

- 4.1.2. Complexification / Decomplexification rules in CCBL 71
- 4.1.3. **CCBL Formal Theory** .. 72
- 4.1.4. Inductive (Hilbert) discourse vs. deductive (Gentzen) discourse in CCBL . 74
- 4.1.5. CCBL – a mono-axiomatic, sound and complete theory of binary logic 76
- 4.1.6. The weight of a formula within CCBL. Defining and representing fuzzy values of truth in CCBL .. 83
- 4.1.7. Complexity bounds for deductive discourse expansion and evaluation 85
- 4.1.8. From **Cognitive Binary Logic** to **Cognitive Intelligent Agents** 90
- 4.1.9. The **Cognitive Dialect** .. 93

4.2. Multivalent logics with applications in biometry

- 4.2.1. Interpreting iris recognition test results in a fuzzy 2-valent confused logic induced by the **Equal Error Rate** .. 103
- 4.2.2. A fuzzy 3-valent disambiguated model of iris recognition 107
- 4.2.3. From the fuzzy 3-valent disambiguated model of iris recognition to an 8-valued Boolean algebra describing the fuzzy biometry. Isomorphic representations for the output space of a fuzzy 3-valent disambiguated model .. 110

4.3. Consistent Biometry .. 120

5. Iris Recognition as a topic of Artificial Intelligence ... 123

5.1. Turing-Zadeh Paradigm of intelligent recognition / classification 124

- 5.1.1. **Turing-Zadeh Formal Models** for knowledge computational (numerical) representation .. 126
- 5.1.2. Illustrating the concept of **Cointensivity** by example: a good shooter vs. an ideal one .. 129
- 5.1.3. Illustrating the concept of **Cointensivity** in logic: weight of a formula within CCBL vs. truth .. 129
- 5.1.4. The importance of the Turing test in iris recognition. The **Precise Turing-Zadeh Formal Model** associated to iris recognition 130
- 5.1.5. The shooter example vs. the **Precise Turing-Zadeh Formal Model** associated to the iris recognition .. 132
- 5.1.6. **Principle of compatibility** ... 134
- 5.1.7. The shooter example vs. iris recognition, again ... 134
- 5.1.8. The **principle of efficient Turing-Zadeh modeling** 135
- 5.1.9. The **principle of reasonable negotiation in Turing-Zadeh formal modeling** ... 138
- 5.1.10. The **Extended Turing-Zadeh Formal Model** associated to an iris recognition Turing test – a meta-theory of iris recognition 139
- 5.1.11. Improving iris recognition – a topic of computational inventics 141

5.2. **Automatic Formal Knowledge Discovery** (**AFKD**) problems associated to iris recognition .. 142

- 5.2.1. **Qualitative Sugeno Models** for iris recognition .. 143
- 5.2.2. Adaptation and evolution in iris recognition. Intelligent agents for supervising Turing tests. Artificial understanding of Turing test data. **Intelligent Biometric Systems** .. 146

6. New methods in iris recognition. Part two: Neuro-evolutionary approaches for optimizing primary segmentation, encoding and matching techniques, for learning digital identities and formal theories of iris recognition .. 149
6.1. Simple AFKD problems in iris recognition .. 150
 6.1.1. Iris segmentation – CFIS2 ... 150
 6.1.2. Iris encoding: Wavelet-Hilbert and Haar-Hilbert encoders 152
 6.1.3. Multi-enrollment iris recognition systems. Stored binary digital identities vs. Fragile Bits ... 156
 6.1.4. Comparing Haar-Hilbert and Log-Gabor encoders 162
 6.1.5. Mixed encoding: Log-Gabor & Haar Multiscale Hilbert 168

6.2. A difficult AFKD problem. Encoding non stationary digital identities. The Intelligent Iris Verifier - Multi-Enrollment (IIV) system with stored non-stationary digital identities ... 169
 6.2.1. The formal framework of the IIV systems .. 169
 6.2.2. Neuro-evolutionary training of digital identities 170
 6.2.3. Individual evolution vs. systemic evolution ... 173
 6.2.4. New (better) models of biometric security. New performance criteria 174
 6.2.5. Interpreting the experimental results ... 176

6.3. The distributed Intelligent Iris Verifier system ... 180

6.4. Iris codes classification using discriminant and witness directions 181
 6.4.1. EER point – a crisp concept in theory, a fuzzy experimentally observed reality .. 182
 6.4.2. Neural network support – an instrument for defuzzificating / precisiating the \(\text{f-EER} \) interval .. 183
 6.4.3. Motivations .. 184
 6.4.4. Hamming distance – a purely vectorial manner of understanding and practicing iris code comparisons ... 185
 6.4.5. Heuristic Blind Training of Discriminant Directions 187
 6.4.6. Geometric view of the iris recognition results obtained by using discriminant and witness directions. Hyperspherical separation 192
 6.4.7. Balanced Intelligent Iris Verifier system .. 195

6.5. Intelligent Iris Verifier single-enrollment systems without stored digital identities ... 200

7. Beyond the current horizon of iris recognition .. 204
 7.1. Template aging ... 205
 7.2. Iris recognition theory – sound and complete? .. 205
 7.3. Iris recognition in unconstrained acquisition scenarios 206

8. Conclusion ... 207

BIBLIOGRAPHY .. 211

ANEXA 1: List of figures .. 216
ANEXA 2: List of tables .. 220
ANEXA 3: List of original theorems ... 220
ANEXA 4: List of original definitions .. 221
ANEXA 5: List of original principles .. 223
ANEXA 6: List of main personal contributions proposed in this thesis 223
Autoevaluation

The main objective of our thesis (Signal Processing Methodologies) is the study of digital signal processing methods with applications in Iris Recognition. The practical examples considered most often throughout the thesis come from this field, whereas the signals that we are working with are those encoded in the iris texture of the human eye, or signals derived therefrom.

Consequently, the digital signal processing methods discussed in this thesis cover the needs of this practical example, all of them belonging in either one of the following fields: computer vision (eye image segmentation, i.e. pupil and iris detection), feature extraction and encoding (binary encoding of the iris texture and of the digital identities, or custom encoding of the digital identities), feature matching (iris matching), artificial intelligence and data understanding (programming intelligent agents used to discover new processing methods or to improve existing ones; computer aided design for large scale intelligent biometric systems) and formal modeling for biometric systems (formal theories of signal similarity detection). In the later direction, we succeeded to formalize non-paradoxical self-referentiality in binary logic, Consistent Biometry, and Turing-Zadeh paradigm of intelligent recognition, all of them used to design the newly proposed paradigm of Intelligent Iris Verifier systems.

Regarding the iris segmentation, encoding and matching, we succeeded to give our own original solutions and to prove that the iris recognition results obtained by using them are at least comparable with the best iris recognition results documented in IREX report. On the other hand, it is exemplified in this thesis that the use of recently proposed Intelligent Iris Verifier systems (which are evolutionary systems endowed with strong logical formal support) allowed us to give the best iris recognition results obtained and announced so far for the test database (Bath Database) and much more important, allowed us to advance from statistical biometric safety toward absolute (logical) biometric safety, from fuzzy bimodal biometric decision to crisp binary biometric decision.

In terms of experimental work, this thesis is supported by over 10,000 exhaustive iris recognition tests (each counting between 500,000 and 60,000,000 one-to-one comparisons), all of them performed on the public dataset University of Bath Iris Image Database and resulting in original conclusions and new results, some of them being published already [44] - [58], others following to be published soon (Chapter 5.1 - Turing-Zadeh paradigm of intelligent recognition / classification, for example).
Motivation

The topic explored in this thesis has two facets: one practical, with immediate applicability in the current technology of iris recognition, and one theoretical (yet), regarding the deep understanding of iris recognition as a subject of Artificial Intelligence, as a problem of encoding a concept (the digital identity) from known hypostases (binary iris codes). The stake in the second case is to achieve a logically coherent computational modeling of an intelligent agent endowed with suitable means that should enable it to prove an artificial understanding of similarity between the signals encoded within the iris texture - in particular, or similarity between other species of data – in general.

Choosing iris recognition as the main research subject of this thesis came from our belief (now confirmed by new results) that this branch of signal processing is still a pioneering area that provides the passionate researcher with a variety of unexplored paths, topics and views. We build this thesis toward these unexplored areas by searching for questions and answers (not necessarily in equal numbers) enabled to change the horizons of iris recognition (and those of the related domains) to the new coordinates of logically consistent and intelligent iris recognition.

From now on, starting with this thesis, the classical paradigm of statistical iris recognition finally has a better alternative, namely that of iris recognition practiced on evolutionary intelligent biometric systems (Intelligent Iris Verifier) in which the new biometric-decisional model is no longer bimodal (statistical), being a binary one instead, being one with absolute safety rates, one strongly cointensive with the reality of iris recognition objectively recorded by interrogating a human agent during a Turing test of iris recognition.

A Turing test shows that the recognition decisions given by a human agent are binary, crisp and correct (unconfused), whereas those usually given by a software agent (at the current state of the art stage) are bimodal, fuzzy and statistically confused. In other words, there is not enough cointension between the human-oriented precisiation and the machine-oriented precisiation of iris recognition, the m-precisiation (the meaning) of recognition practiced on artificial agents is not that of a human agent. Moreover, each of them is supposed to represent well (with cointension) the same event, namely the iris recognition. In short, this is the major contradiction within the current horizon of iris recognition and the main issue that this thesis aims to treat.
Outline

The complexity of the issues addressed in the thesis gradually increases to its final part, in tandem with the quality of the recognition results. In this thesis, the point at which the investigation of iris recognition begins, and also the point where all recognition results return for validation, is quite unexpected: the Turing test [71]. It is a relatively simple routine, which as will be noted throughout the thesis, has the power to bring a welcomed change of perspective in iris recognition: from a statistical theory of similarity, to a theory of intelligent recognition based on new and original soft computing models (Turing-Zadeh models for iris recognition) in which the concept of cointensivity plays the central role.

The research begins in Chapter 2, which illustrates the current state of research in the field of iris recognition. Chapter 2 contains a description of the pioneering phase of iris recognition (Flom, Safir, Daugman, Wildes), followed by a description of the current performance standard (the state of the art) in iris recognition as it is illustrated in the latest independent (and public) evaluation of iris recognition undertaken in 2007 by N.I.S.T. (National Institute for Standards and Technologies, USA) and recorded in the so called IREX 1 Report, [22]. On this occasion we show that the test dataset (University of Bath Iris Image Database, [72]) and the test methodology (exhaustive iris recognition tests based on all-to-all comparisons) adopted in the thesis is relevant for estimating the performance of iris recognition on standard images (as defined in IREX 1 Report, [22]).

Chapter 3 presents new segmentation methods (RLE-FKMQ Based Pupil Finder, Circular Fuzzy Iris Segmentation) and a new encoding method (Hilbert Encoder), techniques that we called primary techniques because they are obtained with no artificial intelligence support and they fits into a new but still classical approach to iris recognition in which the biometric decision is still bimodal, or in other words, they are new means for designing new iris recognition system but without exceeding the classical paradigm of statistical iris recognition. However, as it is outlined almost throughout the entire thesis (but especially in Chapter 4.2, Chapter 5 and Chapter 6), the bimodal biometric decision assumed in the theory of statistical iris recognition (initially proposed by Daugman [13], [16]) is not very much cointensive (or better saying, is not cointensive in values nor in meaning) with the realistic biometric decision model illustrated by recording the recognition decisions given by a human agent during a Turing test.
The primary techniques presented along the third chapter (RLE-FKMQ Based Pupil Finder, Circular Iris Fuzzy Segmentation and Hilbert Encoder or Gabor Analytic Iris Texture Binary Encoder) allowed us to obtain relatively quickly iris recognition results which are (at least) comparable with the results recorded in the report 'IREX 1 for state of the art recognition algorithms proposed by Cambridge University, Cogent Systems, Crossmatch Technologies, Honeywell, Iritech, L1 Identity Solutions, LG, Neurotechnology, Reticle Systems and Sagem. Thousands of exhaustive iris recognition tests undertaken while perfecting the techniques described in Chapter 3 gave us a correct understanding of the current horizons in iris recognition and this happened mainly because our tests were organized as Turing tests and because we always compared the automatic biometric decisions given by a simulated iris recognition system (an artificial agent) to those given by a human agent. By doing this way we accumulated a critical level of practical experience which further allowed us to formalize the Turing test as meta-theories of iris recognition (see the Extended Turing-Zadeh Formal Model associated to an iris recognition Turing test in Section 5.1.10) in which any given possible iris recognition theory (any iris recognition system explicitly known as a set of computation rules) can be compared to a realistic model of iris recognition which is implicitly known through examples of biometric decisions given by the human agent and formalized as a set of cognitive implications (Section 4.1).

An essential element found while doing Turing tests of iris recognition is that the statistical theory of iris recognition guarantees non-empty support for the Liar Paradox, (there are genuine/imposter pairs of iris codes which tell about themselves that aren’t genuine/imposter pairs) whereas in the recorded practice of the human agent this does not happen at all: all pairs are recognized correctly as being imposter or genuine pairs without any kind of intermediary nuances between these two concepts. Clarifying the logical inconsistency situation revealed by the appearance of the Liar Paradox in the internal logic of a biometric system was made possible by creating a new formalization of binary logic - Computational Cognitive Binary (CCBL, introduced in Chapter 4) which hosts the Cognitive Dialect as a form of non-contradictory, well-formed and native self-referential logical discourse written with and about the propositional variables of (Classical) Propositional Logic. The principle of objectivity is set out here and provides necessary support for the computational substantiation of self-consciousness (self-awareness), for logically formalized artificial intelligent agents in general, and for smart biometric systems in particular. Chapter 4 then continues with the study of two fuzzy
logics that can describe the operation of a biometric system: a 2-valent inconsistent (confused) fuzzy logic induced by EER criterion, and an 8-valent fuzzy logic that hosts a 3-Valent Disambiguated Fuzzy Model of iris recognition. To clarify logical aspects related to biometric verification and biometric identification, Section 4.3 outlines that in Consistent Biometry they are logically equivalent. The Principle of Consistent Biometry and the Fundamental Theorem of Consistent Biometry illustrate that verification and identification both carry the same semantic charge, namely the recognition of an individual.

Chapter 5 presents iris recognition as a topic of Artificial Intelligence and Soft Computing. The Turing-Zadeh Formal Models (TZM) of iris recognition are defined and proposed here. The relations between two such models are further expressed as a Qualitative Sugeno Model written in Cognitive Dialect. A TZM formally describing an iris recognition biometric system is a point in the formal meta-theory of iris recognition, is a possible theory of iris recognition more or less cointensive with the reality. An AFKD (Automatic Formal Knowledge Discovery) problem is further defined as being the problem of identifying through an informed search a new theory (of iris recognition, in this case) somewhere inbetween a perfectible TZM of iris recognition precisiated by a software agent (the start point of the search) and a precise (realistic) TZM of iris recognition precisiated by a human agent (the depiction of an ideal iris recognition theory known by examples). The compatibility principle, the principle of efficient computational Turing-Zadeh modeling and the principle of reasonable speed-precision negotiation are further formulated in order to avoid the possibility of building computationally intractable TZMs of iris recognition and/or inconsistent formal theories of iris recognition.

Chapter 6 is dedicated to a new paradigm of approaches to signal processing and iris recognition. Neural or neuro-evolutionary methods are used here in order to optimize existing primary techniques, to encode digital identities and to learn a formal theory of iris recognition. Efficient processing methods of signals derived from the iris image are identified as solutions to search/optimization problems addressed by applying AFKD techniques. Examples of this kind are: the optimized segmentation procedure (CFIS2 – the second version of Circular Fuzzy Iris Segmentation), the optimized binary encoders of the iris texture (Wavelet-Hilbert, Multiscale Hilbert, Haar - Multiscale Hilbert, the combined encoder Log-Gabor & Haar - Multiscale Hilbert) and the procedures for encoding stationary or evolutionary neural memories (discriminant directions or, more
generally, digital identities) needed for *Intelligent Iris Verifier* systems. Chapter 6 covers all of these topics.

The complex formal apparatus described in the thesis is a suitable context for identifying new iris recognition theories that are strongly cointensive with the reality objectively recorded during the Turing tests of iris recognition. This is why, as separation between the classes of scores, the results obtained by simulating IIV systems (with or without stored digital identities) and presented in Chapter 6 are now the number one among the top iris recognition results obtained on the same test database, at a comfortable distance from what is now considered to be a *state of the art* iris recognition result.

Some questions mentioned in Chapter 7 illustrate the open problems in iris recognition: template aging, consistency and soundness of iris recognition, and iris recognition on non-standard images (recognition in unconstrained acquisition scenarios). They prescribe the limits up to which the thesis can conclude (Chapter 8).

The list of main personal contributions proposed in this thesis can be found at page 223 as Appendix 6.

The bibliography includes only titles cited in the thesis. The articles marked in bibliography with bold are our articles. They were written between 2008 and 2011, in direct connection to this thesis.

Lecturer, PhD Candidate, **Nicolaie Popescu-Bodorin**

September 2011
BIBLIOGRAPHY

[39] L. Masek, Recognition of Human Iris Patterns for Biometric Identification, University of Western Australia, 2003.

[47] N. Popescu-Bodorin, A Fuzzy View on k-Means Based Signal Quantization with Application in Iris Segmentation, 17th Telecommunications Forum, IEEE Serbia & Montenegro COM Chapter and Section, University of Belgrade, 24-26 November 2009, Belgrade, SERBIA.

N. Popescu-Bodorin, V.E. Balas, I.M. Motoc, 8-Valent Fuzzy Logic for Iris Recognition and Biometry, accepted in the 5th Int. Conf. on Computational Intelligence and Intelligent Informatics, September 15-17, Floriana, Malta, 2011.

N. Popescu-Bodorin, V.E. Balas, I.M. Motoc, Iris Codes Classification Using Discriminant and Witness Directions, accepted in the 5th Int. Conf. on Computational Intelligence and Intelligent Informatics, September 15-17, Floriana, Malta, 2011.

University of Bath Iris Image Database (retrieved on September 2009), http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/

J. Vartiainen, Iris Recognition Systems and methods, Lappeenranta University of Technology, Department of Information Technology, retrieved on 02.Febr.2008 from

L.A. Zadeh, *Fuzzy logic: a new look*, Fuzzy Logic and Intelligent Technologies in Nuclear Science, 8th Int. Conf. on Computational Intelligence in Decision and Control, Madrid, Spain, September 21-24, 2008.

