
From Cognitive Binary Logic to Cognitive
Intelligent Agents

N. Popescu-Bodorin*, IEEE Member , and V.E. Balas**, IEEE Senior Member
* Dept. of Mathematics and Computer Science, ‘Spiru Haret’ University, Bucharest, Romania

** Faculty of Engineering, ‘Aurel Vlaicu’ University, Arad, Romania
bodorin@ieee.org, balas@drbalas.ro

Abstract—The relation between self awareness and intelligence
is an open problem these days. Despite the fact that self awarness
is usually related to Emotional Intelligence, this is not the case
here. The problem described in this paper is how to model an
agent which knows (Cognitive) Binary Logic and which is also
able to pass (without any mistake) a certain family of Turing
Tests designed to verify its knowledge and its discourse about
the modal states of truth corresponding to well-formed formulae
within the language of Propositional Binary Logic.

I. INTRODUCTION

The relation between self awareness and intelligence is an
open problem these days. Despite the fact that self awarness
is usually related to Emotional Intelligence, this is not the case
here. The problem described in this paper is how to model an
agent which knows (Cognitive) Binary Logic [1] and which
is also able to pass (without any mistake) a certain family
of Turing Tests [2] designed to verify its knowledge and its
discourse about the modal states of truth [3] (necessary truth
- denoted t, contextual truth - denoted ct, impossibly truth /
necessary false / contradiction - denoted f , [1]) corresponding
to well-formed formulae within the language of Propositional
Binary Logic (BPL).

The context of this paper is given by [4] and [1]. More
precisely, in order to improve a complex software platform
for iris recognition [4], an inference engine is needed. The
computational model of this engine will be derived from Com-
putational formalization of Cognitive Binary Logic (CCBL)
introduced in [1]. First step in this direction is to extend
CCBL up to an intelligent agent enabled to pass some Turing
tests, and this is the subject of the present paper.

II. PREPARING FOR THE TURING TEST

In order to pass the Turing test, the agent must have
conversational capacities. Let us assume that the agent gets
the input p which looks like a well-formed formula of PBL.
An example of this kind is the Liar Paradox discussed in [1].
The problem is that a deductive discourse [1] depends on the
given input string but it also depends on the given goal which
is obvious for a human agent, but not for a software agent.

In other words, for a software agent, the input string p
can be translated into one of the following sentences: ‘p is
(always) false’, ‘p is (always) true’, ‘p is a contextual truth’,
‘p is false and well-formed’, ‘p is true and well-formed’, or
into one of the following queries: ‘is it p a theorem?’, ‘is it p
a contradiction?’, ‘is it p a contextual truth?’.

A. The cognitive dialect
The introduction of two semantic markers denoted ‘(!):’ and

‘(?):’ is mandatory in order to differentiate between assertions
(affirmations) and queries (questions), respectively. With these
notations, in the cognitive dialect, the deductive discourses are
derived from the deductive discourses written in CCBL by
adding ‘(!):’ or ‘(?):’ prefix to each vertices.

The second reason for introducing these markers is that in
order to prove a certain degree of self awareness, an agent must
be able to understand the difference between the assertions like
‘I ask’ and ‘I say’ and also between ‘I ask myself’, ‘I say to
myself’ (‘I found’, ‘I proved’, ‘I know’), ‘I ask you/someone’,
‘I say to you/someone’.

When it comes to imagining a logical human-machine
dialog, the most important thing is that if the human tells
something to the agent, then what is told can be true or false,
but anything said by the agent must be true (or else, it is
inevitably that the agent is inconsistent and, sooner or later, it
will fail to pass a certain Turing test).

Also, to keep the design of our agent as simple as possible,
we will consider that all assertions are positive, i.e. all of them
declare that something is true:
‘it is true that p’:

(!) : t → (p ∨ f), (1)

or ‘it is true that p is false’,

(!) : t → [(p → f) ∨ f], (2)

or ‘it is true that p is a contextual truth’:

(!) : t → [(ct → p) ∨ f]. (3)

By analogy, any query will ask for something true:
‘is it p true?’:

(?) : t → (p ∨ f), (4)

or ‘is it true that p is false?’:

(?) : t → [(p → f) ∨ f], (5)

or ‘is it true that p is a contextual truth?’:

(?) : t → [(ct → p) ∨ f]. (6)

The third convention allows the agent to manipulate all three
states of modal truth using a purely binary vocabulary. We

achieve this by introducing the dialog function (N. Popescu-
Bodorin):

d : ĈI → {l, n} × t̂ ∪ f̂ , (7)

where: l and n are two reserved labels (meaning that the input
assertion/query is logical or nonsense, respectively), t̂ is the
class of all tautologies, f̂ is the class of all contradictions,
and ĈI is defined as follows: if p is a well-formed formula
of PBL (p ∈ FORM), then:

[(!) : t → (p ∨ f)] ∈ ĈI,

[(!) : t → ((p → f) ∨ f)] ∈ ĈI,

[(?) : t → (p ∨ f)] ∈ ĈI,

[(?) : t → ((p → f) ∨ f)] ∈ ĈI.

The output of the dialog function d is computed using the
following rules:

1) p is a tautology if and only if the full deductive discourse
[1] of the input assertion

(!) : t → (p ∨ f)

is a deductive proof [1]. In this case, the dialog function
outputs the doublet:

(l; t) ∈ {l, n} × t̂.

I.e. the agent proves that p is always true and the input
assertion is (logically) well-formed.

2) p is a tautology if and only if the full deductive discourse
of the input assertion

(!) : t → ((p → f) ∨ f)

is a deconstruction [1]. In this case, the dialog function
outputs the doublet:

(n; t) ∈ {l, n} × t̂.

I.e. the agent proves that p is always true and founds that
asserting falsity for a tautology is a logical nonsense.

3) p is a contradiction if and only if the full deductive
discourse of the input assertion

(!) : t → (p ∨ f)

is a deconstruction. In this case, the dialog function
outputs the doublet:

(n; f) ∈ {l, n} × f̂ .

I.e. the agent proves that p is always false and founds
that asserting truth for a contradiction is a logical
nonsense.

4) p is a contradiction if and only if the full deductive
discourse of the input assertion

(!) : t → ((p → f) ∨ f)

is a deductive proof. In this case, the dialog function
outputs the doublet:

(l; f) ∈ {l, n} × f̂ .

I.e. the agent proves that p is always false and the input
assertion is well-formed.

5) p is a tautology if and only if the full deductive discourse
of the input query

(?) : t → (p ∨ f)

is a deductive proof. In this case, the dialog function
outputs the doublet:

(l; t) ∈ {l, n} × t̂.

I.e. the input question is well-formed, the agent proves
that p is always true and gives a pozitive answer to the
input query.

6) p is a tautology if and only if the full deductive discourse
of the input assertion

(?) : t → ((p → f) ∨ f)

is a deconstruction. In this case, the dialog function
outputs the doublet:

(l; f) ∈ {l, n} × f̂ .

I.e. the input question is well-formed, the agent proves
that p is always true and gives a negative answer to the
input query.

7) p is a contradiction if and only if the full deductive
discourse of the input query

(?) : t → (p ∨ f)

is a deconstruction. In this case, the dialog function
outputs the doublet:

(l; f) ∈ {l, n} × f̂ .

I.e. the input question is well-formed, the agent proves
that p is always false and gives a negative answer to the
input query.

8) p is a contradiction if and only if the full deductive
discourse of the input query

(?) : t → ((p → f) ∨ f)

is a deductive proof. In this case, the dialog function
outputs the doublet:

(l; t) ∈ {l, n} × t̂.

I.e. the input question is well-formed, the agent proves
that p is always false and gives a pozitive answer to the
input query.

9) p is a contextual truth if and only if none of the full
deductive discourses of the input assertions

(!) : t → (p ∨ f)

(!) : t → ((p → f) ∨ f)

or of the input queries

(?) : t → (p ∨ f)

(?) : t → ((p → f) ∨ f)

is a deductive proof. In this case, the dialog function
outputs the doublet:

(l; [pt → (t → p)] ∧ [pf → (p → f)])

I.e. the agent find a context pt which makes the formula
(t → p) satisfiable and also finds a context pf which
makes the formula (p → f) satisfiable.

By analyzing the outputs of the dialog function it can be
seen that, in the cognitive dialect is legal to ask anything but
it is illegal to assert falsity for a tautology or to assert truth
for a contradiction.

B. Simple examples

Let us consider that the formula α = (p → q) is given to
be studied. If the input query is (?) : t → (α ∨ f), a full
deductive discourse written in cognitive dialect would be:

(?) : t → ((p → q) ∨ f)

(?) : (t ∧ p) → (q ∨ f)

The context which makes the formula (t → α) satisfiable is:

αt = [(t ↔ q) ∨ (p ↔ q) ∨ (p ↔ f)].

If the input query is (?) : t → ((α → f) ∨ f), a full
deductive discourse written in cognitive dialect would be:

(?) : t → (((p → q) → f) ∨ f)

(?) : (t ∧ (p → q)) → f

(?) : [t → (p ∨ f)] ∧ (?) : [(t ∧ q) → f]

The context which makes the formula (α → f) satisfiable is:

αf = [(t ↔ p) ∧ (q ↔ f)].

The output of the dialog function is the following doublet:

(l; [αt → (t → α)] ∧ [αf → (α → f)])

Hence, α is a contextual truth. Also, αt and αf describe the
solutions of Boolean satisfiability problems (t → α) and (α →
f), respectively.

Fig. 1. A deductive discourse for Modus Ponens written in the cognitive
dialect.

In the second example, Modus Ponens is analyzed. For the
input query:

(?) : [p ∧ (p → q)] → q,

a full deductive discourse written in cognitive dialect would
be the deductive proof presented in Fig.1 and the output of
the dialog function is the doublet (l, t).

In the third example, the contradiction (p∧¬p) is analyzed.
For the input query:

(?) : t → [((p ∧ ¬p) → f) ∨ f],

a full deductive discourse written in cognitive dialect would
be the following deductive proof:

(?) : t → [((p ∧ ¬p) → f) ∨ f],

(?) : (t ∧ p ∧ ¬p) → f

(?) : (t ∧ p) → (p ∨ f)

The output of the dialog function is the doublet (l, t). Hence,
the input assertion (!) : t → [(p∧¬p)∨ f] will be recognized
as a logical nonsense and the output of the dialog function
will be the doublet (n, f).

The forth example analyze the Modus Tollens argument.
For the input query:

(?) : (|p → q| ∧ |¬q|) → |¬p|
a full deductive discourse written in cognitive dialect would
be the following deductive proof:

(?) : t → {[(|p → q| ∧ |¬q|) → |¬p|] ∨ f}
(?) : (t ∧ |p → q| ∧ |¬q|) → (|¬p| ∨ f)

(?) : (t ∧ |p → q| ∧ p) → (q ∨ f)

[(?) : (t ∧ p) → (p ∨ q ∨ f)] ∧ [(?) : (t ∧ q ∧ p) → (q ∨ f)]

Hence, the output of the dialog function is the doublet (l, t).

In the fifth example, we consider the tautology:

[p → (q → r)]→[(p → q) → (p → r)].

A deductive discourse written in cognitive dialect is presented
in Fig.2 and the output of the dialog function is the doublet
(l, t).

III. THE AGENT

The basic functionality of the proposed Cognitive Intelligent
Agent (CIA) is described in Fig.3. Let us consider the
Turing tests containing the following type of problems: for
an arbitrary formula p ∈ FORM , CIA is required to find
if the input assertion/query is or isn’t a logical nonsense, and
also if p is a tautology, a contextual truth, or a contradiction.

Since the CCBL theory is sound and complete [1], CIA
will give the correct answer for any input query written in
cognitive dialect. Also, if the input assertion is a logical

Fig. 2. A deductive discourse written in cognitive dialect for the tautology [p → (q → r)] →[(p → q) → (p → r)].

nonsense, CIA will correctly recognize it. Therefore, CIA
will pass with a success rate of 100% all sessions of Turing
tests designed to verify its knowledge and its discourse about
the modal states of truth corresponding to formulae within
the language of PBL. Hence, there is no doubt that as a
software agent, CIA demonstrate the highest possible degree
of intelligence. Still, the agent is not enabled to be aware of
itself and of its environment or to simulate self-awareness.

 CCBL
Interpreter

 (!/?): t →(p ∨ f)
(!/?): t →((p → f) ∨ f)

Dialog function: (d
1
,d

2
)

User input written in cognitive dialect:

Output

Fig. 3. The Cognitive Intelligent Agent

IV. CONCLUSION AND FUTURE WORK

The basic design of an inteligent agent was proposed in this
paper. It is an example of a fully intelligent agent which is not
at all aware of itself. Still, it is enabled to engage in simple
conversations about the modal states of truth of well-formed
formulae of PBL, without doing any mistakes.

Future developments will include self-awarnes which is
needed in order to enable the agent to supervize complex

computations and to engage direct communication with hu-
mans on specific subjects, other than the modal truth state
of the formulae of PBL. For example, we plan to gather
humans‘ opinions about some particular iris recognition re-
sults in a similar manner with that described in [5] where
customers‘ emotive responses to a product are collected using
a questionnaire. The goal is corelate iris recognition results
obtained automaticaly with human feedback and to explore
the limitations that could apear in iris recognition when using
eye images captured in insufficiently constrained aquisition
conditions.

On the other hand, we know that some sub-problems of
iris recognition are in NP (the class of problems solvable in
nondeterministic polynomial time), and consequently heuristic
algorithms must be used in order to achieve some speed. The
problem is that quantifying the quality of their results is a
matter of degree [6] (in fact, the results of these heuristic
algorithms are near solutions, not exact solutions). Therefore,
future developments in the direction of fuzzy logic are not
excluded at all.

REFERENCES

[1] N. Popescu-Bodorin, L. State, Cognitive Binary Logic - The Natural
Unified Formal Theory of Propositional Binary Logic, accepted in The
4th European Computing Conference (ECC 2010, Bucharest).

[2] A. M. Turing, Computing machinery and intelligence, Mind, 59, 433-
460, 1950.

[3] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic Cambridge Uni-
versity Press, 2000.

[4] N. Popescu-Bodorin, Exploring New Directions in Iris Recognition,
Proc. 11th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, SYNASC‘ 09,Conference Publishing
Services - IEEE Computer Society, pp. 384-391, 2010.

[5] A. Mohais, A. Nikov, A. Sahai,S. Nesil, A tunable swarm-optimization-
based approach for affective product design, Proc. 9th WSEAS Int.
Conf. on Mathematical and Computational Methods in Science and
Engineering, MACMESE’07, pp.254-258, 2007.

[6] L. A. Zadeh, Test-Score Semantics for Natural Languages, Proc. of the
9th conference on Computational linguistics, Vol. 1, pp. 425 - 430,
1982.

